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1. Introduction and Key Ingredients:

- Statistical tests or confidence interval
estimation with a predetermined sense
of accuracy

- Some sense of optimality In place
- Appropriate sample size determination

- Appropriate data collection strategies

- Gather data sequentially, step-by-step,
and “learn” as we proceed



Some Key References:

* Mahalanobis (1940)
o Stein (1945,1949)
o Wald (Wiley: 1947)

 Mukhopadhyay and Solanky (Dekker:
1994, Chapter 2)



e Ghosh, Mukhopadhyay, and Sen (Wiley:
1997, Chapter 6)

 Mukhopadhyay, Datta, and Chattopadhyay,
eds. (Dekker: 2004)

 Mukhopadhyay and de Silva (CRC: 2009)

Note 1: The last-mentioned book includes a large
number of standard methodologies with

accompanying computer programs in executable
forms

Note 2: We will implement some of them in a
number illustrations to follow
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2. Sequential Probability Ratio Test (SPRT)

X: A response variable with its probability distribution f(x;8)
X may be discrete or continuous, 8 in © unknown
We may want to test
Hqg:0 =865 versus H, : 8§ =041, 81, > 85 and 8q,8, from ©.
With n independent responses z1, @2, ..., ,, Neyman-Pearson
theory will provide the most powerful (MP) test: Reject Hy iff
7 f (245 01)
I, f (245 60)
The cut-oftf k(> 0) is chosen by the fixed size of the test, a.
We may also require power 1 — 5 with preassigned «, 5. Then?

> k, that 1s the ratio 1s “large”.

et us look at a “Normal Mean” example.



2.1. Normal Mean Example

X1, ..., X,, are random samples from N (8,0°) with 6 unknown,
but 62 known. We want to test
Hg:0 =05 versus H, : 6 =84, 8, > 8.
Detect effect size “8; — 83”7 efficiently!
The N-P MP level o test would reject Hp iff X is “large”,
that is iff X > 6y + 200/ /T
where 2z, is the upper 100a% point of N (0, 1) distribution.
We further demand that type-1l error must be < 3, then
the optimal fixed-sample-size n must be determined as:

2
n — ((Z31+Z§j J) =n*, say.

SPRT will provide much more economical n.



2.2. Wald’s SPRT for General Distribution f

Having fixed «, 5 we determine A4 = %, B = % Then, keep

observing Xy, Xo, ... one by one in a sequential manner until
the likelihood ratio

_ Hlef(miigl)
T f (w3 00)
goes outside the interval (B, A) first time.

Here, “A” indicates “large” and “B” indicates “small”.

Then, we determine required number of observations NV as:

N = first integer j(> 1) such that A; > A or A; < B;

We will accept H, if Ay > A; accept Hg if Ay < B.
Although P(N < oco) =1 w.p.1, N ought to be truncated if it

asks to go beyond n* observations in the normal example.



2.3. Optimality

Wald and Wolfowitz (1948) proved the following remarkable
optimality property of SPRT among all tests (including the
N-P MP test) with comparable «, 8 (included in Mukhopadhyay
and de Silva 2000, p. 43).

Optimal property of the SPRT: Consider testing Hy : 8 = 8
versus H, : 8 = 81.Among all tests with type-1 error probability
< a, type-II error probability < 8, a + 8 < 1, with Ep|[N| < oo
when 6§ = 8q,60,, Wald’s SPR'T with error probabilities «, 5 has
the minimum Fg¢|N| when 8 = 8¢, 0.



2.4. Truncation of the General SPRT

Suppose we can observe at most K observations only. Then we

will implement the truncated SPRT as follows:

Keep observing X;, X5, ... one by one 1n a sequential manner
checking whether the corresponding A; goes outside (B, A)
according to sampling stategy. If a decision 1s made with NV
smaller than K, then N 1s te sample size. if no decision 1s
made even when the K*" response is observed, then we stop

at N = K: Decide to accept Ho(H,) if Ax < (>)%(A+ B).

In the normal problem, we should pick K = n* given earlier!



2.5. Back to Normal Distribution IHlustration

Illustration Normal with 8 and &2

An = exp{ ~ (00~ 01)02 3= X, — (0}~ 02)0~2/2)
N = first n(> 1) such that Z X; > cyln A+ neo,

or ZX < c¢;InB + neg, with ¢ = 020, — 8g) 1

= (90+9 )/2.
Accept Ho(Ho) if > X > caln A+ nea(< ¢1 In B + nea).

=1



Data Simulations with 10,000 Replication
6 =1,0, =2, aa=0.05 5g=0.1
Hy:08=1versus H, : 8§ =2
0p=1,0, =2, aa=0.05 5=0.1
with 0% =4, n* = 34.27;
with 62 = 16, n* = 137.08.
Implement Seq03.exe from Mukhopadhyay and de Silva (2009)

In what follows, | take liberty in showing some
screen shots in order to illustrate how a job runs.



Select one of the following programs:

1 SimAB: Simulation of alpha + beta for a test
2 SPRT: SPRT for giver or simulated data

3 0OC: Computstion of OC and ASN (uncticns

5} Exit

Entz2r your choice :2

SPRT fcr 119:theta - theta€é wversus lll:theta - thetal

BABLBRBALABRARABRLARARABBIAAILARLAAPLLABARAALALARABELAAS

= =
= I0# DISTRIBJTION Theta Known *
x (Parameter1) Paramster? *
= =
= 1 Normal mean variance =
= 2  Gamma scale shape *
= 3 Weibull scale shape *
= 4 Erlang exp. mean k(integer) *
= g Exponential mean =
x E Ppopicson mean ’
¥ 7  Bernoulli M(Success) 1
- € Geometric P{5Success) *
= § Negative Binomlzl mean k #
= =
N R NCNC RGN N0 AR DN D0 N DR R JHCORC N DN T 0N N N0 DN DN R NCORC DN DR 0 N0 0 DNCJRC N D0 DN DR B 0N N0 N0 i R0

Input cistribution ID# : 1

Enter thetad
thetal
eglpha
Feta

1}
2O e



Do you want to change the input parameters (Y or N)? n

Would you like to truncate the SPRT when
sample size reaches K (Y or N)?2 n

Do you want to simulate data or input real data?
Type S (Simulation) or D (Real Data) : s

Do you want to store simulated sample sizes (Y or N)? n

Number of replications for a simulation? 1060600

Enter a positive integer(<1@) to initialize
the random number sequence : 8

For the data simulation, input
mean of the normal distribution: 1
variance: 4



N0 N N0 0 N0 20 N0 00806000 N0 NN RN 6 O 6 N R N R N RGN N N 0 N0 N N N N

SPRT: HO:theta = 1.00 Versus Hil:theta = 2.00 at
alpha =0.65 and beta =6.10 where theta is the
mean of normal distribution with wvariance = 4.0

Results for simulated data from
Normal distribution with mean = 1.8

Number of Simulations = 16666
Mumber of times H@® is accepted = 29611
Average sample size (n bar) = 18.75
Std. dev. of n (s) = 14.18
Minimum sample size (min n) = 2
Maximum sample size (max n) = 130

N N AN N NN NN NN NN RN



Table 1. Sirnulated results with 10,000 replications for untruncated

SPRT of Hy -8 =1 vs H, : 8 =2 for N(8,c?) with o2 = (4, 16)

known, preassigned o =005, f =01, true § = (1,1.5 2).

2

a true n* n Fr pr, %0 Min Max 1 @z s
g

4 1 34 27 1875 0142 9511 2 130 Q 15 24

15 34 27 3291 0267 Eb58&D 2 207 14 ZH 44

2 327 2243 0154 T30 2 147 12 18 29

16 1 13708 6052 0549 O566 6 571 32 53 90

15 13708 11625 0057 EBETH T K25 49 87 153

2 13708 %1 86 (.568 004 il 526 41 66 106

Table 2. Simulated reaulta with 10,000 replications for truncated SPRT teat
of Hy 8 =1vs H, 8 =2for N(8,c?) with 2 = (4,16) known, preassigned
a=0058=01,true # =(1,1.52) Truncation at X

a*  true K [ e Mmn Mar 1 G2 s pH, ny P, I
g % %
4 1 25 1715 0.099 “ 25 o 15 24 9379 1146 7TZ69
L5 35 2372 0107 2 35 14 25 35 EBEYT 3388 4973
2 35 2000 0098 2 35 12 18 29 1084 1522 25095
16 1 138 ©378 0393 6 138 51 B3 91 9351 1017 7198
L5 138 8806 0427 & 138 49 87 138 bgl7T 20l 5113
=2 138 7425 0.38% 8 138 42 66 105 1171 1377 2694




The Operations Characteristic (OC) function:
L (8) = Probability of accepting Hy when 8 is true,
L{6p)=1—«, and L(8;) = 8.

The Average Sample Number (ASN) function:
FEo|N| when @ is true

Next, we show some plots for the OC function |(8, L(8))]

and ASN function [(8, Fg|N])|:

e | e
~ 3 / \\

N\ a1 /N

a0 02 04 08 4B 1.0

Fig. 1: Hy:0=1vs. H, : 8 =2 for N(6,16),« = 0.05,5 = 0.1
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Real Data Illustration:

“Bodyfat” dataset from Statlib (lib.stat.cmu.edu/datasets/),
submitted by Johnson (1996). Data include percentage of
body fat determined by underwater weighing and various
body circumference measurements for 252 men.

We llooked at response variable (X): “Density determined
from underwater weighing”.

Some descriptive statistics of density underwater are shown:

Min 21 Median Mean @z Max s.d.
0.995 1.041 1.0565 1.056 1.070 1.109 0.019

We looked at histogram and Q-Q) plot and boxplot. These looked
rather normal distribution. Shapiro-Wilk normality test gave
p—value = 0.6571.

We treated this dataset (X) as our population: N(@,0.019?)



We set out to test: Hp : 8 = 1.06b vs H, : 8 = 1.060 with
a =0.05, # =0.1, and K = 124(= n*).
The SPRT terminated with N = 24 observations, and our

decision was to accept Hp upon termination.

How about SPRT’s in non-normal distributions?

In an extended version of the draft paper (with Yan

Zhuang, expected Ph.D. August 2018), we have

Illustrations with simulations real datasets from

e Gamma (unknown scale, known shape): Body
dimensions (Heinz et al., 2003),

 Lognormal (location unknown, scale known):
Rosner's FEV (maximum forced expiratory volume in
one second) data.



2.6. Remarks: Sequential Tests Under Unknown
Nuisance Parameters and Other Situations:

Test on normal with unknown variance: Use program
Seq04.exe (Mukhopadhyay and de Silva, 2009): Sequential

t-test or Chi-square test or F-test ...

Discrete distributions (Binomial, Poisson, Negative
binomial, Zero-inflated)

Unequal sampling at stages, perhaps according to some
distribution (Mukhopadhyay and de Silva, 2005)

Two-sample or multi-sample tests

Scenarios where the response X may be multivariate ...



3. Fixed-Width Confidence Interval

3.1. Normal Mean Example

X1, ..., X,, are independent, distributed as N(#,c?), where
8,02 are both unknown. Usual (1 — a) confidence interval

for & 1s:

T

In: Ynj:t:n,— a/f2 — |
1,00/2 /n
where t,_1 o /2 1s the upper 50a% point of the t-distribution

with (n — 1) degrees of freedom, X,, is the sample mean,
and S,, 1s the sample standard deviation.

What should be n?



Length of the confidence interval I, 1s K,, = Qtn—l,a/z%:
which is random that might be (very) large for fixed n even
1if unknown ¢ 1s “small”. That 1s, I,, may be too wide for
practical use.

Therefore, 1t may be necessary to construct a confidence

interval J,, for & which satisfies two requirements:
HP{eeJ,} >1—a;
2) Length of J,, < 2d,d(> 0) is preassigned half-width.
This J,, is called (1 — «) fixed-width confidence interval for 6.
such J, can not be constructed by any fixed-sample-size

procedure (Dantzig 1940) if n is predetermined and fixed.



The fixed-width confidence interval J,, = |X,, £d] for ¢ also
has preset (1 — a) confidence if the required sample size n
1s determined as follows:

n > zimaz/dg = n*, say.
This n* is called the optimal fixed sample size had o2 been
known. But, magnitude of n* remains unknown!

Some adaptive estimation methods for n* are provided next.
3.1.1. Two-Stage Sampling
Mahalanobis (1940), Stein (1945,1949)



Begin with m(> 2) pilot observations Xy, ..., X,,, and obtain

the sample variance S2 from {X;, Xs, ..., X, } to estimate o=.

Recall that n* was zg,/gcrg/dg. Let the final sample size:

N = max {m, <ti1_1’w28i/d2> + 1} :
where (u} = the largest integer < u.
Example 1: Suppose m = 20, and ti_l,&/zsi/dg = 12.82.
Then, N = max{20, < 12.82 > +1} =20 = N = 20.

| a2 [ = 63.27.
Then, N = max{20, < 63.27 > +1} =64 = N = 64.

Example 2: Suppose m = 20, and tfn_



Generally speaking, we proceed as follows:

a) if N = m, then we already have enough data in pilot stage.
In this case, final dataset is { X, Xo, ..., X;n };

b) if N > m, then we have too few data in pilot stage. Then,
we gather (N — m) new observations in the second stage.
In this case, final dataset is { X1, ..., X}, Xonv1, o, X -

Final fixed-width confidence interval for 8: Jy = | Xy = d].

where Xy is the sample mean from final dataset {X1,..., X5 }.

Big Result (Consistency or Exact Consistency): For fixed

0, o, « and d, one has: P {0 € Jy = |[Xny £d]} > 1 —a.

This fundamental construction of adaptive sampling in two-steps
changed everything after Wald’s construction of the SPRT.



Simulations were carried out using the program

Seq06.exe from Mukhopadhyay and de Silva

(2009)

with 10, 000 replications with o = 0.1, m = 10

Table 3a. Simulations of two-stage estimation strategy

d

#

o n 0 sw  n/n* D S5

0.1 1.500 19.239 24.314 0.110 1.264 0.903 0.003
1.000 43.289 54.272  0.252 1.254 0.906 0.003
0.800 67.639 83.978 0.392 1.242 0.902 0.003
0.600  120.246  149.965 0.703 1.247 0.904 0.003
0.400 270.554 336.704  1.580 1.244 0.894 0.003
0.200 1082.217 1346.401 6.318 1.244 0.898 0.003




Table 3b. Simulations of two-stage estimation strategy

with 10, 000 replications with « = 0.05, m = 10

d

%

o n 0 sw  n/n’ P S
0.05 1.500 27.317 37.001 0.171 1.354 0.952 0.002
1.000 61.463 81.718 0.382 1.330 0.949 0.002
0.800 06.036  128.128 0.592 1.334 0.950 0.002
0.600  170.732  229.777 1.093 1.346 0.950 0.002
0.400  384.146  517.077 2.466 1.346 0.950 0.002
0.200 1536.584 2051.753 9.630 1.335 0.952 0.002




Table 3c¢. Simulations results of two-stage estimation strategy
with 10, 000 replications with « = 0.01, m = 10

&

o d n 0 Sm n/n* J S5
0.01 1.500 47.181 75.382 0.357 1.598 0.991 0.001
1.000 106.158 169.157 0.795 1.593 0.989 0.001
0.800  165.872  264.773  1.230 1596 0.992 0.001
0.600 294 884 470.074 2.222 1594 0.990 0.001
0400  663.490 1062.446  5.022 1.601 0.990 0.001
0.200 2653.959 4258.497 20.121 1.605 0.991 0.001




Stein’s two-stage solution, though path-breaking, also came
with some baggage of 1ts own:
a) Oversampling: E[N/n*| > tfn_ljafg/zi/g(f% 1).
Not too disturbing!
b) Asymptotic Oversampling: F|N/n*| — t?n_lﬂ/g/zi/z
(> 1) as d — 0. This can be disturbing!
Note that 02 was estimated only once through pilot data.
Appropriate modifications were proposed and implemented
by Mukhopadhyay (1980) and Mukhopadhyay and Duggan
(1997) in order to gain substantial efficiency by drastically
reducing the extent of oversampling via right choices of

m under two-stage adaptive sampling methods.

2

Why not estimate ¢° sequentially, multiple times?”



Table 4. Asymptotic Oversampling Percentage
t?n—l,q/z/zi;’z values for o = 0.1, 0.05,0.01,
m = (10, 20) in the Two-Stage Procedure

m = 10 m = 20
o oversampling % oversampling%
0.10  1.2420 (24.20%) 1.1051(10.51%)
0.05 1.3321 (33.21%) 1.1404(14.04%)

0.01 1.5918 (59.18%) 1.2336(23.36%)




Real Data Illustration:

We used the infection risk of hospital infection data from
Kutner et al. (2005) on 113 hospitals in the US, 1975-76.

We treated the 113 observed values of infection risk as

population data. Normality checks went smoothly.

Table 5. Single run to estimate the
mean of infection risk with a = 0.05,
m = 10 for two stage procedure
d n’ n X, S- 05% CI
0.6 19.02 25 4.26 1.57 (3.66,4.86)
0.5 27.38 35 4.31 1.97 (3.81,4.81)
0.4 42,79 55 4.40 1.97 (4.00,4.80)

True mean infection risk 4.355 lies within each conf interval.




3.1.2. Purely Sequential Sampling

Anscombe (1952), Ray (1957), and Chow
and Robbins (1965)

Begin with m(> 2) pilot observations Xj, ..., X,, and obtain
one additional observation at-a-time giving rise to (n,yn, Sﬁ) ,
successively for n = m, m + 1, ... as needed.

Recall that n* was z 2/af2 Let the final sample size:

N:min{n>m n > 22 o/2 n/dg}
In this case, final dataset is {X1,..., Xon, ..., Xn } -

Final fixed-width confidence interval for 8: Jy = [Xn +d].
with X, the sample mean from final dataset {X1,..., Xn}.



Properties:

P@,U(N < DC') = 1.

Asymptotic Consistency: ﬂlgin}]Pgﬁ{Q cdy}l=1-c.

Asymptotic Efficiency: r:lgin%]E’lc;:‘,g N/n*| = 1.

This methodology 1s also asymptotically second-order

efficient (Ghosh and Mukhopadhyay 1981).

Next, we show some simulated results.



Table 6. Simulated results of purely sequential estimation

strategy with 10, 000 replications, o = 0.05, m = 10

&

o d 7 0 sw n/n’ D 55
0.05 1.500 27.317 25.423 0.082 0.931 0.923 0.003
1.000 61.463 59.531 0.124 0.969 0.941 0.002
0.800 96.036 94.469 0.147 0.984 0.943 0.002
0.600  170.732  169.660 0.190 0.994 0.948 0.002
0400  384.146  383.407 0.276 0.998 0.948 0.002
0.200 1536.584 1536.069 0.5568 1.000 0.952 0.002




Table 7. Simulated results of purely sequential estimation

strategy with 10, 000 replications, o = 0.05, m = 20

&

o d n 7 sw  n/n* D 55
0.05 1.500 27.317 27.104 0.062 0.992 0.942 0.002
1.000 61.463 59.686 0.120 0.971 0.941 0.002
0.800 96.036 94.5663 0.145 0.985 0.943 0.002
0.600 170.732 169.677 0.189 0.994 0.948 0.002
0.400  384.146  383.364 0.276 0.998 0.948 0.002
0.200 1836.584 15636.060 0.557 1.000 0.949 0.002




Real Data Illustration:

Table 8. Single run to estimate the mean
infection risk with «« = 0.05, m = 10
for purely sequential procedure

d n* N Xy &2 05% CI

0.6 1002 20 420 1.87 (3.60,4.80)
0.5 27.38 24 420 1.55 (3.70,4.70)
04 42.79 48 4.46 1.94 (4.06,4.86)

True mean infection risk 4.355 lies within each

confidence interval.



3.2. Remarks: Sequential Fixed-Size Confidence
Regions and Other Situations:

Discrete distributions (Binomial, Poisson, Negative
binomial, Zero-inflated): Based on the MLE

Many other continuous distributions (Negative
exponential, Exponential, Gamma, Lognormal ...): Based
on the MLE

Multivariate and regression simultaneous confidence
and point estimation problems (under other loss functions)

Unequal variances (treatment allocations)
Multiple comparisons ...



Thank You

Any Question or Comment?



